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Introduction to PLOrk 

The Princeton Laptop Orchestra (PLOrk) was co-founded in 2005 by Princeton 

professors Perry Cook and Dan Trueman. As a musical group, PLOrk aims to create music from 

the range of player's creativity, which has the potential to "both guide the development of new 

instruments and technologies" while also invigorating the concept of the orchestra [Trueman 

2007]. Members of PLOrk use their own laptops and additional interface devices to play pieces 

that are coded predominantly in ChucK. During its flagship year, PLOrk was composed of 

fifteen members. Today, PLOrk has over thirty members and plays with well-known groups such 

as Matmos and So Percussion. Players work with 2.1 GHz Macbook laptops running Mac OS X 

and connect to an Airport Extreme Base Station that is used solely by PLOrk and does not 

connect to the Internet.  

Introduction to ChucK 

 Most compositions performed by PLOrk are written in ChucK, a programming language 

designed for real-time music synthesis, composition, and performance which was developed by 

Ge Wang and Perry Cook in 2003. The language was designed to be flexible, allow control over 

the passage of time in programs, and allow synchronization among programs running at the same 

time, while maintaining a strong correspondence between code structure and timing.  ChucK 

resembles Java, but the language relies very heavily on a unique overloaded operator called the 

ChucK operator: =>. Among its many uses, the ChucK operator is used to ChucK (i.e. throwing 

one entity onto another or assign) values to variables (e.g. 3 => int foo), and to connect unit 

generators in a sequential manner (e.g. SinOsc s => Gain g => dac). 
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 While many programming languages allow the programmer to specify what a program 

will do, ChucK also allows the programmer to specify when a program will do certain things, 

making ChucK a strongly-timed language. ChucK has two primitive types, time and duration, 

that allow fine control over time.  Time itself is a primitive type and computable – the keyword 

now specifies the time (in samples) since a program began running. A duration is a period of 

time that is specified by value::units (e.g. 1::second is a duration of 1 second). Computations are 

assumed to happen infinitely fast with respect to the program running, so time only advances in 

the program when it is explicitly advanced, which is done by ChucKing a duration to the 

keyword now (duration => now). By advancing time, the program pauses for the amount of time 

specified in duration and control is given to the ChucK virtual machine and synthesis engine, 

which produces sound. Time can also be advanced by waiting on an event, which can be a signal 

sent out by another ChucK program running on the same machine, data from a human interface 

device, or a message sent over the network from another program [Wang 2008]. 

Networking for PLOrk – Problem/Motivation 

 Like the conductor of an orchestra, the network is a powerful tool that can be used to 

create a particular type of sound from the orchestra as a whole. But unlike a traditional conductor 

that typically keeps players on beat, controls dynamics, and cues sections in, the network also 

allows any type of information to be transmitted to all players, such as filter parameters, text 

messages for players to read, or control messages to manage the volume levels of players. 

Depending on the design of a particular composition, the network may not be used at all and a 

person conducts the orchestra in the traditional sense; a program can be set to conduct the 

orchestra automatically over the network; or a person can control a program that automatically 

keeps tempo but allows the conductor to adjust other settings [Cook, et al. 2008]. Most of the 
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current PLOrk repertoire relies on networking for either tempo synchronization or transmission 

of other performance-related information.  

During its earlier years, when there were fewer members, the ability to synchronize 

PLOrk orchestra over a wireless network was described by early composers as "remarkable, 

though not flawless" [Cook, et al. 2008]. With a single computer acting as a conductor sending 

out pulses for players to synchronize to, pulses could be sent out as frequently as every 40 

milliseconds without a problem.  Still, there were times when the network presented difficulties, 

and those involved in PLOrk knew exploring more robust and reliable means for communicating 

was important for compositions to function as designed [Cook, et al. 2008].  

With the growing membership of PLOrk, more and more hiccups in the network are 

occurring and compositions that used to function properly over the network, now do not perform 

as well. With more traffic being transferred over the wireless local area network (WLAN), the 

increased traffic has caused packets to experience higher delay or be dropped completely. In 

pieces where a server sends a pulse over the network for all players to synchronize to, the 

aforementioned issues result in computers synchronizing to different pulses at different times, 

which produces an audible and undesirable variation in the beat players are synchronized to.  

 There are workarounds to using flaky wireless networks; such as having players manually 

sync their computers during a piece and then performing the piece as usual. Still, having a 

reliable network to automate synchronization allows players to focus more on performing and 

less on making sure their computer is synchronized. Manual synchronization requires a person to 

play the traditional role of an orchestral conductor, which is not atypical for PLOrk, but should 

not be a requirement of all pieces. Wired networks using Ethernet and hubs to connect all of 

PLOrk may also be an option to explore, although the directors of PLOrk strongly prefer the 
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current wireless setup. A more desirable solution to dealing with the inherent unreliability of 

networks is to design a protocol that makes best-effort delivery more reliable and robust.  

Current Networking Protocol – Open Sound Control (OSC) 

 For communication over networks, ChucK currently implements Open Sound Control 

(OSC) - a protocol designed for communication among devices over networks to produce 

interactive music. There are many implementations of OSC in all types of programming 

languages, interactive sound synthesizers, and sensor/gesture capture hardware. All of them 

enable devices to communicate over existing network technologies – communication is most 

important while reliability, accurate timing, and accepting various data formats to transmit are 

desired features [Wright 2005]. The ChucK implementation of OSC contains two classes: 

OscSend for constructing and sending OSC packets, and OscRecv, which receives OSC packets 

and parses the contained data. The types of data that can be transmitted are integers, floats, and 

strings. OSC packets are transported over the User Datagram Protocol (UDP) [Wang 2006].  

 UDP is commonly used for time-sensitive applications such as VoIP and online gaming. 

In UDP, packets are simply sent to their destination – there is no acknowledgement from the 

receiver that the packet has been received and packets are not resent if they are dropped. For 

time-sensitive applications, it is not worth sending a packet again if it does not reach its recipient 

because if the packet was resent, by the time it reaches the recipient, the information contained in 

the packet would be old and obsolete. Consider a call over voice over IP (VoIP) – packets 

containing voice data are sent from caller to caller. If a packet is delayed or dropped it is not 

worth sending the packet again since that voice data is old.  

 Although networking for ChucK is a time-sensitive application, UDP is not the perfect 

solution for our problem especially considering how small the PLOrk network is. The other main 
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protocol for transporting packets is Transmission Control Protocol (TCP). TCP is designed for 

guaranteed delivery rather than the timely but inconsistent delivery UDP provides. Still, TCP has 

features that do not make it a good candidate for transporting our OSC packets. TCP resends 

packets that are dropped or lost which is not useful for real-time music production. TCP also 

requires a handshake between communicating parties, which is not entirely useful either – we 

can already create a pseudo-handshake between server and clients with OSC. Still, TCP has 

some features that would be useful to have running on the PLOrk network – mainly a higher 

guarantee of delivery of packets, discarding of duplicate packets, and flow control to avoid 

congesting the network. Developing a protocol that is as robust, and functions in real-time as 

UDP, but provides some level of guarantee like TCP is desired for the problems occurring in 

many PLOrk pieces and in music performance over networks in general.  

Background Work 

 The concept of performing music over networks has become a widely researched area as 

the increasing power of networks has removed the traditional barriers performers had to share 

when performing together. But is performance over networks that are only best-effort and do not 

provide any quality of service guarantees even possible?  

 The SoundWire group, a research group based at Stanford University, has been 

researching how to transfer audio and perform interactive music over networks. In 2000, the 

SoundWire group put on several teleconcerts by streaming high-quality uncompressed audio 

between two musical events at separate locations on Stanford's campus. Later in the same year, 

the group was successful in putting on another teleconcert between Stanford and North Carolina 

over Internet2 [Chafe, et al. 2000]. The SoundWire group also turned the network between 

locations into an instrument by measuring network statistics between those two locations and 
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then transforming that data into sound, which provided a quick way to assess the quality of the 

connection [Chafe, et al. 2001]. Tests were also conducted by the SoundWire group to assess the 

effect of delay on two performers' rhythmic accuracy when they were in separate rooms. When 

separated by longer delays, tempo deceleration resulted, while shorter delays (< 11.5 ms) 

produced tempo acceleration. A delay of about 20 milliseconds between locations was found to 

be optimal for ensemble performance [Chafe, et al. 2004]. The early work done by the 

SoundWire group illustrated that performance over networks was certainly possible.  

In the Gigapop Ritual performed in 2005, researchers from Princeton University in New 

Jersey, USA and McGill University in Montreal, Canada set out to perform jointly while being at 

the two distant locations to test if interactive performance over networks was possible. Although 

the Gigapop Ritual and the resulting framework that was designed, GIGAPOPR, could transmit 

audio, video, and MIDI data, the design principles behind GIGAPOPR attempted to work around 

many of the networking issues that occur when PLOrk laptops are communicating data over a 

local wireless network in the same room.  

 GIGAPOPR was designed to be straightforward while providing optimizations for 

operating over the low-latency, high bandwidth Internet2 and CA2Net networks. All data 

transmitted in GIGAPOPR used the User Datagram Protocol (UDP). While UDP does not 

provide flow control or congestion control, the designers of GIGAPOPR realized that waiting for 

the retransmission of dropped or delayed packets that TCP implements would not be useful in a 

live, real-time performance. Packets sent via the GIGAPOR framework also included a sequence 

number in the header that enforced ordering of incoming packets, allowed detection of packet 

loss, and made redundant transmission of packets possible. With sequence numbers it was 
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possible to send copies of each packet to increase the chance at least one of the packets would 

reach its destination [Cook, et al. 2005]. 

 With any framework, there always exists some latency between sending a packet and the 

receiver of a packet because there is a limit on how fast packets can move – the speed of light. 

During this particular performance between Princeton and Montreal the average measured 

round-trip latency was between 120 and 160 milliseconds. Since there was no way to have a true 

real-time feed between the two locations, when performing a piece, one location served as the 

leading side and the other location served as the following side separated by the round-trip 

latency of 120 ms. In this particular performance, performers in Princeton served as the leaders 

and once the data arrived at McGill, the performers played along to what they were seeing. The 

researchers who developed the GIGAPOR framework concluded that performances relying on a 

best-effort network was certainly possible and was a concept worth pursuing especially 

considering how fast networks have become [Cook, et al. 2005].  

In April of 2008, the SoundWire group set out to put on a joint real-time performance of 

Terry Riley’s In C between Stanford University in California and Peking University in Beijing, 

China. With such a vast distance separating the two locations, many of the same issues present in 

the Gigapop Ritual had to be dealt with for this performance, which was designed to transmit 

both audio and video feeds. Like in the Gigapop Ritual, researchers dynamically measured the 

RTT between Stanford and Peking University and then used that measurement to set the tempo 

of the eighth notes that comprise In C. When a note was played at Stanford, it was transmitted 

over the network and then played at Peking exactly one eighth note later (relative to the 

performance at Stanford) and vice versa for notes played at Beijing. This technique of using the 

RTT between the two locations to set a tight rhythmic alignment between vastly separated 
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locations is known as feedback locking. The end result is a tightly synchronized piece at each of 

the performance locations, which allowed there to be a live, interactive transcontinental 

performance [Cáceres, et al. 2008]. 

While the GIGAPOPR framework and SoundWire performance of In C were 

synchronizing over rather large distances, some of the problems the researchers worked around 

still need to be addressed for performers who share the same room on a local network. These 

performances and frameworks were also designed to transfer audio and video feeds which is not 

currently used in any PLOrk pieces. Researchers at Waseda University in Japan designed a 

protocol that applies more closely to the type of protocol that may be used in PLOrk. In a typical 

PLOrk piece, control messages and synchronization pulses are the most common type of traffic 

transmitted over the network. The researchers at Waseda developed a protocol, called the 

Remote Music Control Protocol (RMCP) that integrated MIDI and computer networks.  

 RMCP is a connectionless server-client model where various clients broadcast messages 

that various servers receive and process. By relying on broadcasting, information is shared 

among all servers without having to specifically retransmit packets to each server. Each server 

serves a different, specified role – one may be visually displaying what is happening, and another 

may be producing the sound [Goto, et al. 1997]. The most interesting feature of RMCP lies in the 

time scheduling feature built into it. 

 RMCP packets have the option of including a timestamp in the packet header. If a server 

receives a packet before its timestamp, the packets are queued and only processed when the 

current time matches the timestamp. Packets received after the time in the timestamp are 

discarded and packets without timestamps are processed immediately. Timestamps were 

included to compensate for variation in network latency. This implementation requires that the 
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clocks among all computers be synchronized. In RMCP, synchronization of clocks occurs via the 

RMCP Time Synchronization Server (RMCPtss). Essentially, all machines keep a table of the 

offset of their clocks to every other machine. Periodically, a machine broadcasts what time it is 

and all other machines then calculate their offset to that machine and update their table of offsets. 

With RMCPtss, time among all machines becomes absolute and timestamps can be used [Goto, 

et al. 1997]. The scheduling functionality present in RMCP may potentially be a useful model to 

emulate in a PLOrk setting to deal with jitter in network latency.  

 Roger Dannenberg of Carnegie Mellon University developed another system for real-

time distribution of data over networks called Aura.  Aura was designed to be flexible in the data 

it can transmit while providing low-latency, real-time communication between clients. The most 

interesting aspect of Aura is that, unlike previously described frameworks, Aura runs over TCP 

instead of UDP. While UDP seems to be the best protocol for real-time transport, it does not 

guarantee delivery of messages. Dannenberg found UDP to be reliable across local area networks 

in controlled situations, but found that multiple machines transmitting messages via UDP 

resulted in dropped packets. Because of the reliability issues with UDP, Dannenberg opted to try 

using the reliable protocol for packet transport, TCP [Dannenberg 2001]. 

 TCP is not the preferred protocol for real-time systems: TCP buffers information to 

minimize the number of packets that need to be sent which creates a delay that is separate from 

the delay packets experience over the network; TCP also retransmit lost or heavily delayed 

packets which is not useful since the data that packet contains will most likely be obselete. Still, 

with a few option changes to TCP, Dannenberg was able to make TCP's timing behavior very 

similar to UDP's. By turning off the option to wait for more data to come in to merge so fewer 

packets are sent, more packets are sent, but there is no delay between sending data and having it 



10 

sent. To make retransmission of lost packets not obsolete in his real-time system, Dannenberg 

sent more audio samples than what was typically computed in the period between when packets 

are sent. If a packet dropped, there would still be data to process while the next packet was sent 

[Dannenberg 2001]. The success of Aura as a real-time music processing system and its use of 

TDP helps show that one need not create a real-time system at the cost of reduced reliability – 

you can have both real-time and reliable communication over a network.  

Packet Loss and Music Performance Over Networks 

 While UDP appears to be the preferred protocol to use when implementing tools to 

perform music over networks, past implementations added extra functionality on top of UDP to 

make it more reliable. The features added to UDP did not make it any less capable to perform 

real-time communication over a network, but added mechanisms to ensure some level of 

reliability. In the new protocols drafted for networking in PLOrk, the general design goal was to 

add functionality to the UDP-based OSC classes already present in order to make them more 

reliable and robust, while ensuring real-time performance was still possible. 

 The current networking protocol used in ChucK has no mechanism to detect packet loss. 

Simply adding sequence numbers to every packet sent, like in the GIGAPOPR framework, 

allows a receiver to determine many things about arriving packets. If the receiver keeps track of 

the sequence number of the last packet received from every client, any packets received with a 

sequence number less than the last observed is old and should be discarded. Packets received 

with a sequence number greater than the last sequence number plus one means a packet was lost. 

Including sequence numbers also allows redundancy to be implemented since a receiver can sort 

out redundant packets by simply keeping track of the last sequence number seen and discarding 
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redundant packets that share that same sequence number. The GIGAPOPR framework designers 

mentioned the possibility of using redundancy to increase the chance of packet delivery. 

 If sequence numbers are used and redundancy is implemented, implementing more 

functionality to control how redundant the protocol is should also be considered. If there is not 

enough redundancy and packets are lost, a mechanism should be in place to increase redundancy. 

If there is sufficient redundancy, the protocol should be able to back off and behave like a good 

neighbor to avoid congesting the network with unnecessary redundancy. With these principles in 

mind, I drafted a new protocol for networking in ChucK called Adaptive and Redundant OSC 

(AROSC).  

Adaptive and Redundant OSC (AROSC) 

AROSC is an extension that is built on top of the two OSC classes in ChucK, OscSend 

and OscRecv. These extensions were built and coded in two new ChucK files: AROscSend, 

AROscRecv. All methods available in the OscSend/OscRecv have their counterparts in the 

AROSC version so adapting the code is relatively easy (see the converting code from OSC to 

AROSC guide in the Appendix for more information regarding code converting). AROSC adds 

three data fields to every packet – the source host (string), a sequence number (integer), and the 

sending rate (integer) as shown in Figure 1.  

 

 

 

Since the PLOrk network is relatively small, AROSC's first feature is sending multiple 

copies of a packet via AROscSend objects in hopes that sending multiple copies of a packet over 

the network will improve delivery rate. If one packet is sent over OSC, there is a risk that packet 

Figure 1 – AROSC packet 
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will be dropped or delayed. In AROscSend, multiple copies of the same packet are sent to the 

destination with the hope that at least one copy will make it to the destination. AROscSend 

currently defaults to sending ten copies of each packet and has a method that allows the user to 

change the default redundancy rate. Since the network is relatively small, this added redundancy 

will hopefully provide a higher level of guarantee for packet delivery, rather than exacerbating 

packet loss because of increased traffic.  

For every packet that AROscSend sends, each unique packet is given a sequence number, 

which increases sequentially. Every packet also includes the name of client sending the packet. 

AROscRecv keeps a list of all clients and the last sequence number received from those clients in 

an associative array. When a packet is received, the sequence number is used to check if the 

packet is new or a copy of one already received. Duplicate packets are discarded (a feature of 

TCP). Packets that are old (sequence number is less than the last sequence number seen) are also 

discarded. With sequence numbers, data that arrives out of order is better handled (another 

feature of TCP).  

 Sending multiple copies of a packet may not be enough – what if all the packets are 

dropped? The regular OSC class has no mechanism for checking for dropped packets. AROSC 

uses sequence numbers to check for dropped packets. If a packet is received from a client and the 

sequence number is more than one greater then the last seen sequence number, a packet must 

have been dropped so a message requesting a rate increase is sent to the client. This message is 

sent multiple times to ensure delivery and has a large random integer attached to it so the client 

can discard duplicate requests.  

 The last piece of data attached to every AROSC packet is the copy rate – how many 

copies of the packet are being sent. AROSC can adapt to send more packets, but it should also be 
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able to cut back when most packets are getting through to aid in flow control. This good citizen 

policy helps reduce packets being delayed or dropped by reducing unnecessary redundant traffic. 

To implement this, AROscRecv keeps track of how many times it has seen a duplicate packet – 

if that number matches the number of copies sent, a message is sent to the client to cut back on 

the sending rate. Currently, the minimum sending rate allowed in AROSC is three copies; any 

requests to lower the rate when AROscSend is only sending three copies of each packet will be 

ignored.  Figure 2 summarizes how AROscRecv handles arriving packets. 

 

  

 

 

 

  

While still being UDP-based, AROSC implements some TCP-like features that provide a 

higher guarantee of packet delivery. While there is a possibility that the increased traffic brought 

about by redundancy will only make networking worsen, the adaptive measures built into 

AROSC attempt to prevent this from happening. And while the redundancy implemented in 

AROSC helps with dropped packets, the variable delay packets experience on the network may 

still be an issue that must be addressed.  

AROSC Testing 

 AROSC was tested and compared to OSC during a PLOrk rehearsal. For testing 

purposes, two programs were written to test AROSC and OSC under various conditions. A 

server program was written that ran on a single machine. This server periodically broadcasted 

Figure 2 – AROscRecv handling incoming packets 
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messages via multicast with messages that commanded the client programs to send traffic over 

the network to the server. The messages sent from the server included which protocol to use 

(AROSC or OSC), how many packets to send, and how often to send them. When the clients 

received this message, the message would be parsed, and the specified number of packets at the 

specified rate were sent to the server. Each client's machine name and Sequence IDs were 

included in each packet so delivery success could be assessed for each client. The server 

receiving the packet logged the name of the machine sending the packet, the sequence ID, and 

the time the packet was received. Various sending rates were tested – sending a packet every 

500, 250, 100, 50, 25, and 10 milliseconds. 

 Packets sent at rates ranging from a packet every 500 milliseconds down to a packet 

every 100 milliseconds performed equally well with both the OSC and AROSC protocols. With 

both protocols, packets arrived in order at the server and none were dropped. As the rate packets 

were being sent increased there was a noticeable increase in the variance in delay observed at the 

server receiving packets from all the clients. This could be attributed to the increase in traffic 

over network that increases the delay some packets will experience as they travel over the 

network.  

 Packets sent at and below rates of a packet every 50 milliseconds via AROSC did not 

perform better than OSC. Because of the increased load on the server receiving redundant 

AROSC packets, the server had to do more work for arriving AROSC packets compared to OSC 

packets. Due to the increase in traffic caused by the redundant nature of AROSC, the AROSC 

receiver had to perform a larger amount of calculations on arriving AROSC packets in a shorter 

amount of time. At higher sending rates, the redundancy feature built into AROSC bogged down 

the server program and made networking among machines unusable.   
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 Figure 3 summarizes the AROSC 

testing results. At each of the rates tested, 

clients sent thirty packets to the server at the 

specified rate. Delivery success was defined 

as a packet arriving in order relative to the 

last received and in a timely manner – 

packets were given three times the rate they 

were being sent at to arrive after the last packet was received, before the packet was counted as 

not having arrived successfully. For AROSC packets sent at rates faster than a packet every 100 

milliseconds, only a small fraction of packets that were the first to be sent were delivered 

successfully before the server became overloaded by the redundant packets and unable to process 

all incoming packets in a timely manner. At the same rates, OSC packets were delivered 

succesfully at much higher rates, suffering only from occasional reording of packets while being 

transmitted and congestion that caused packets to arrive too late.  

Although AROSC did not perform well under high sending rate conditions it did show 

that redundancy is not a necessity for the network setup it was tested on. Packets sent over OSC 

or AROSC were rarely completely dropped – in the worst case, a packet just experienced an 

incredibly high amount of delay and arrived out of order at the server. If dropped packets was not 

the main issue affecting PLOrk compositions, other properties of networks were analyzed and 

adapted around to get better networking for PLOrk.  

Figure 3 – AROSC/OSC testing summary 
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Packet Delay and Synchronization 

 Although AROSC intended to solve the problem of dropped packets over a network, that 

problem was not the main issue affecting PLOrk pieces. Another inherent property of networks – 

variable latency in packet delivery – presents greater issues for PLOrk pieces that rely on 

networking. The delay packets experience would not be an issue if it were always constant – 

when a server sends out pulses for synchronization, if all those pulses took the same amount of 

time to reach all clients, every client would be in sync. The jitter present in delay is what causes 

an issue – if a server sends out pulses to many clients and each pulse takes a different amount of 

time to reach each client, clients will be synching to the same pulse at different times. A protocol 

that works around the inherent delay and jitter of delay present in networks is desirable in these 

circumstances.  

 The current implementations of the receiving classes of OSC process packets as soon as 

they arrive in the buffer. When a packet is sent from one client to another, the receiver processes 

it as soon as the packet arrives after travelling over the network. Since ChucK is strongly-timed, 

it would be rather simple to send a timestamp field and have a receiver parse a packet only when 

the current time is the timestamp. The problem with this implementation is that there is no notion 

of an absolute clock among different machines or even different shreds (an instance of a ChucK 

program) running on the same machine. ChucK bases its time (the value of now) on the number 

of samples that have passed since the shred began running so the notion of time depends only on 

when the shred began running. If a timestamp field were to be properly implemented, there also 

needs to be measures to synchronize the time among all machines so the timestamp is treated the 

same across all machines. A measure of latency between machines also needs to be measured so 
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synchronization of clocks can account for the varying latency in packets communicating the 

synchronization data. 

 Synchronizing system clocks over a network has already been studied and implemented 

in the Network Time Protocol (NTP). In NTP, a system clock is synchronized to a reference 

clock that provides the current time.  The protocol consists of multiple exchanges of request and 

replies from client to server to synchronize the system time of the client to that of the server. The 

client first sends a request to the server with its own time (originate timestamp) in a packet.  

When the server receives this packet, it attaches its own time (receive timestamp) and then 

attaches the time when the packet is sent back (transmit timestamp). When the client receives 

this packet, the client logs when the packet was received so it can calculate the delay in receiving 

the packet to provide more accurate synchronization.  It normally takes about five exchanges of 

this type to fully synchronize. When synchronization that takes place over the Internet, the 

typical accuracy comes within 5 to 100 milliseconds of the actual time on the reference clock 

[Windl, et al. 2006].  

 Adrian Freed, a researcher at the Center for New Music and Audio Technologies at UC 

Berkeley, has been researching how to improve OSC to deal with the issues jitter in latency 

presents. Freed notes that although there are many implementations of OSC, most lack a 

mechanism to manage the delays and randomness present in networks [Freed, et al. 2008]. Freed 

proposes that, assuming the communicating machines' system clocks are in sync (via NTP or 

some other synchronizing protocol), a sender can add a time-tag to an OSC packet, which the 

receiver queues upon arrival and only processes it at the time marked for evaluation that is 

attached to the packet.  Freed calls this setup forward synchronization, as communicating 

machines are synchronizing to a future point rather than synchronizing immediately upon packet 
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arrival. Freed notes that how far in the future the time-tag should be set depends on network 

latency which may vary from network to network, but if an NTP-like construct is used to 

synchronize the clocks, this issue becomes less of a concern as NTP keeps a measurement of 

average latency [Freed 2004].  

 An OSC implementation that could synchronize clocks of communicating devices and 

implement a time-tagging system could effectively curtail the issues presented by variable packet 

latency in networks. If the protocol used to synchronize clocks is strong enough and the time-

tags used are greater than the largest observed latency, then pulses sent out from a server should 

be executed by all the clients regardless of the delay the packets experience reaching their 

destination. Based on these design goals, I drafted a new protocol for networking in ChucK 

called Time-Tagged OSC (TOSC).   

Time-Tagged OSC (TOSC) 

 TOSC is an extension of the current implementation in OSC designed to work around the 

problem of variable latency packets experience over a network. TOSC compromises two 

modules – the first is an NTP-like protocol that synchronizes the ChucK virtual machine time 

among the communicating machines and the second is a forward synchronization model that is 

used to synchronize packet delivery to a future point so that all machines process packets at the 

same time. The TOSC protocol comprises four classes – two that implement the NTP protocol, 

NTPServer and NTPClient, and the other two that mirror the OSC classes already present in 

ChucK – TOscRecv for receiving packets and TOscSend for sending packets. When using the 

TOSC protocol, one machine functions as the NTP server and runs NTPServer while all other 

machines run NTPClient. TOscRecv and TOscSend then use the synchronized clocks provided 

by the NTP classes to schedule packets for future processing. 



19 

 In the NTP protocol implemented, 

NTPClient objects communicate with a single 

NTPServer object and sync their clocks to the 

server's time. The typical synchronization 

transaction is summarized in Figure 4. The client program polls the server every second so it can 

stay accurately synchronized. The synchronization protocol begins by the client sending its 

system time (Tclient) in a packet to the server. When the server gets this packet, it appends its 

system time (Tserver) and sends the packet back to the client. When the client receives this packet 

it logs the time it receives the reply (Treceived).  

Simply adjusting the client's system clock to account for the difference between the two 

machines (Tserver – Tclient) does not account for the latency in the transmission of this information 

over the network, which changes over time depending on traffic. By logging the time the request 

is sent and then received, a pseudo-ping is implemented and the round-trip time for the packet 

can be calculated (Treceived – Tclient). Assuming that the total delay is split evenly between sending 

the packet to the server and getting the reply from the server, the delay from the server to the 

client and vice versa is half the round-trip time. Based on this information we can calculate the 

offset needed to synchronize the client's clock to the server's clock: (Tserver – Tclient) - (1/2) * 

(Treceived – Tclient). The current TOSC implementation I have written takes the most recent polled 

synchronization information and uses that to synchronize the clock of the client. Future 

implementations may use an algorithm, like NTP, to calculate an average so that more accurate 

synchronization can occur after enough samples are gathered. 

The implementation of NTP also sends the time the server receives the packet in addition 

to the time the server sends the packet back to the client, which then allows the client to account 

Figure 4 – NTP Synchronization Transaction 
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for the time the server was handling the packet. This was found to be unnecessary in TOSC 

because the code executed between the server receiving a packet from the client and sending it 

back occurs infinitely fast, so no time elapses in the ChucK virtual machine while the server 

processes a request. Thus, there is no need to include this time when synchronizing the clocks.  

Once the system clocks are synchronized among communicating machines, packets sent 

can use the synchronized time provided by the NTP objects. In addition to appending the current 

time to every packet, the sender also needs to specify the time-to-open (TTO) offset. When the 

receiver gets the packet, it will calculate the time-to-execute (by adding the current time and 

TTO fields) and then queue the packet and pause the program for the duration between the 

current time and the time-to-execute before processing the packet. The main issue now is how 

large to make the TTO field and how we should go about determining it so that the protocol 

functions. If the TTO field is too small, the delay the packet experiences over the network may 

cause the packet to arrive too late. If the TTO field is too large, the rate of information flow will 

be less than the network can handle.  

Fortunately, in the implemented NTP protocol, NTPClient objects measure the round-trip 

time (RTT) from client to server. If the latency is split evenly from client to server and from 

server to client, then the smallest acceptable value for the time-to-execute is half the RTT. Still, 

the latency may vary between the NTP server and the various clients synchronizing to it. While it 

may seem natural to have the NTPServer object running on the computer that is sending the 

packets, any machine should be able to send TOSC packets. In addition to an absolute notion of 

the current time, there also needs to be an absolute notion of what the TTO field should be so 

that regardless of who is sending packets, the TTO field will be the same.  
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To implement this, NTPClient objects report the RTT they calculate when synchronizing 

their clocks, to the NTPServer object. The NTPServer object takes all this information and uses 

it to calculate an appropriate value for the TTO. A large, safe value for the TTO is hard-coded 

into all NTP objects, and this value is used until the NTPServer object determines it is safe to 

change the value.  Since all computers on the PLOrk network are one hop away from the server 

and each other, a single large value that is greater than the average observed RTT is used. The 

mechanism to change the TTO field across all machines is conservative when the field is being 

lowered – if the average reported RTT is 20% of the current TTO being used, the TTO value is 

cut in half. The mechanism is liberal when the field is being raised – if the average being 

reported rises to 60% of the current TTO, it doubles the value. Although cautious, this 

mechanism will ensure that any lowering of the TTO field will not be immediately followed by a 

need to raise it. With this mechanism, all machines communicating will have a safe and 

synchronized value for the TTO field.   

With the clocks and acceptable TTO fields synchronized among all machines by the NTP 

protocol, the functions of TOscSend and TOscRecv are simplified. TOscSend appends the 

current time and the TTO offset in every packet. It would be possible to just add a single field 

and put the absolute time to the process the packet in it. Separating the current time and TTO 

offset fields was a design decision to make testing easier as both fields are computed separately 

in the NTP implementation. When TOscRecv gets a TOSC packet, it calculates the time the 

packet should be executed by adding the current time and TTO fields. If the time calculated is in 

the past, the packet is discarded. If the time is in the future, TOscRecv halts the program and 

advances time until the packet is scheduled to be opened and then passes along a signal for 
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packet parsing to begin. Figure 5 summarizes how TOscRecv handles incoming TOscSend 

packets. 

 

 

 

 

With this TOSC implementation the issues presented by variable network latency become 

less of an issue. Since packets are scheduled for opening rather than being opened immediately 

upon arrival, if clocks and average latency can be measured and synchronized accurately, the 

scheduling mechanism will be strong enough that synchronization can occur among all the 

machines performing over the network.   

TOSC Testing 

 TOSC was tested and compared to the OSC implementation during a PLOrk rehearsal to 

see if it could better handle the issues presented by varying latency. The test consisted of a 

computer functioning as a server that sent out packets via multicast to all other computers 

connected to the PLOrk wireless network. Upon receiving these packets, the clients would play a 

note on a mandolin unit generator. The test was run with both the original OSC implementation 

built into ChucK and the new TOSC protocol. Packets were sent with each of these protocols at 

varying rates: a packet every 500 milliseconds, 250 milliseconds, and 100 milliseconds. The 

server shred was killed completely, and there was a pause between running tests to ensure no 

packets from one test leaked into another.  These tests were recorded for later evaluation and 

presentation. These recordings can be accessed at www.princeton.edu/~mcerquei/networking. 

Figure 5 – TOscRecv handling incoming packets 
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Controls were also added for comparison – these were produced by recording the output of a 

simple ChucK program that played a mandolin unit generator at the specified rates. 

 Evaluation was done by comparing the recorded test to the control of the same rate in the 

wave editor Audacity. Recordings were edited so that the first recorded pulse lined up the first 

pulse of the controls. An evaluation was done by playing both audio tracks simultaneously and 

noting if there was any deviation between the recorded test and the control.  For more testing, the 

gain of each track was manipulated during the evaluation to bring out or subdue the sound of one 

track – this ensured that both tracks were being heard. Each track was also assigned to particular 

headphone speaker (i.e. the recorded test was played out of the headphone's right speaker and the 

control was played out of the headphone's left speaker). By separating the recordings being 

compared, it became significantly easier to evaluate the recorded tests.  

  At all three rates, the TOSC implementation produced better results when it came to 

synchronizing the notes clients were playing. Even at the slowest rate tested, a packet sent every 

500 milliseconds, the varying delay over the network and OSC's inability to handle this variance 

produced a syncopated sound. Compared to the control, the syncopation among groups of pulses 

became even more apparent. At 250 milliseconds, a consistent beat is produced with OSC among 

all the clients that played for 12 pulses. The following 13th pulse played sooner than 250 

milliseconds later and this pattern repeated for the entire test. Further investigation into this 

consistent irregularity is worth future exploration. At 100 milliseconds, the OSC implementation 

played at the proper rate for about 12 seconds until the network became congested and the rate 

slowed down considerably for 3 seconds. After the congestion cleared the rate returned to 

normal. The TOSC implementation did not produce any large noticeable variance among clients 
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playing notes. When compared to the controls, the TOSC recordings matched up closely and 

played along without any serious audible variation.  

 An example of these findings is shown in Figure 6. This figure is a screenshot of the 

Audacity with three tracks in it – from top to bottom, the control recording, the TOSC recording, 

and the OSC recording all at the rate of a packet every .50 seconds. These tracks are being 

displayed in the FFT spectrum view mode, which shows the position of the energy of frequencies 

over time. This view mode was preferred over the waveform view because of the ambient noise 

in the recordings. Notes being struck on the mandolin are represented by vertical lines in the 

spectrum. Comparing the control track (topmost) to the TOSC and OSC recordings (middle and 

bottommost respectively) one can see that the plucks on the mandolin via TOSC are very 

synchronized to the control while the OSC recording fails to produce consistent plucks at the 

correct rate.  

 

The one notable issue that is not possible to hear in the TOSC test recordings is that some 

machines would intermittently stop playing for a while before returning to playing again. This 

issue came as no surprise because TOSC was designed to discard packets that arrived past the 

Figure 6 – FFT spectrum view of (top to bottom) the control, TOSC, and OSC recordings 
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time to parse the packet. The cause of this issue is the NTP protocol implemented is not finding 

an acceptable value for the TTO field in every packet. Implementing a more conservative 

algorithm that calculates a larger TTO field from the round-trip time information it receives will 

help ensure that fewer packets arrive to clients with expired timestamps. Even with this issue, the 

clients that did play were always synchronized and the clients that stopped playing were able to 

play in sync upon returning to playing. 

Conclusion and Future Work 

 The work performed to bring more reliable, robust, and real-time networking to the 

Princeton Laptop Orchestra (PLOrk) brought about two protocols that addressed inherent issues 

of best-effort networks. Adaptive and Redundant OSC (AROSC) attempted to address the 

unreliability of networks and the issues caused by dropped packets. Time-Tagged OSC (TOSC) 

attempted to address the issues caused by the variance in delay packets experience while 

travelling over a network. Although the AROSC implementation did not prove to be a better 

alternative to the OSC implementation during testing, it eliminated the number of issues that 

needed to be addressed by TOSC. In real-world testing, TOSC proved to be better in 

synchronizing PLOrk by handling the issues caused by variance in packet delay.  

 Although TOSC performed better than OSC in a PLOrk-based setting, there is still much 

work that can be done to improve TOSC to make it even more robust and reliable while still 

providing real-time functionality. The NTP-based protocol that synchronizes clocks in the TOSC 

can be improved by implementing better algorithms to calculate achieve even higher accuracy 

for synchronizing clocks and getting better real-time measures of the latency packets are 

experiencing. The current NTP implementation in TOSC has NTP clients polling the NTP server 

every second while a program runs – this is unnecessary as the standard NTP implementation 
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can achieve highly synchronized clocks after only a few exchanges between client and server. 

Synchronizing clocks, and then achieving a high measure of confidence for the synchronization 

and then not synchronizing for the duration of a program will reduce the amount of traffic over 

the network, which will be beneficial for performance-specific traffic.  

TOSC is also currently implemented completely in ChucK, so the source files must be 

manually included in any programs that make use of them. Writing TOSC into the ChucK source 

code will be beneficial in getting more ChucK users to try the new protocol and will also make 

TOSC more efficient and faster. Programming practices should also be evaluated – are there 

performance differences between multicasting and unicasting to each client?  

 While the protocols implemented here set out to synchronize PLOrk over a network, the 

mere fact that performers in PLOrk share the same physical space lends itself to imagining 

various other methods available for synchronization. Aside from relying on people to manually 

sync to a conductor, one could imagine computers syncing to a sound produced by a server that 

is inaudible to humans or an electromagnetic wave that is invisible to human eye. While these 

methods would not have to deal with packet delay, they carry their own issues that must be 

addressed should they be implemented. Regardless of the methods explored in the future, as the 

art of interconnected computer music grows, the need to deal with the issues of computers and 

networks will grow, but it certainly is an issue worth tackling.   
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Appendix 

AROscSend.ck 
 
public class AROscSend { 
    3 => int MIN_RATE; 
    30 => int MAX_RATE; 
     
    OscSend packets[MAX_RATE]; 
     
    int m_portSend; 
    int m_portListen; 
     
    Std.getenv("NET_NAME") + ".local" => string myName; 
 
    MIN_RATE => int m_numCopies; 
    Std.rand2(1, 255) => int m_seqID; 
    0 => int m_lastRateSeq; 
 
    fun void setHost(string hostname, int port) { 
        for (0 => int i; i < packets.size(); i++) 
            packets[i].setHost(hostname, port); 
         
        port => m_portSend; 
        (port + 1) => m_portListen; 
                 
        spork ~ listenRateChange(); 
    } 
     
    fun void startMsg(string msg, string args) { 
        for (0 => int i; i < m_numCopies; i++) { 
            packets[i].startMsg(msg, "s, i, i, " + args); 
            packets[i].addString(myName); 
            packets[i].addInt(m_seqID); 
            packets[i].addInt(m_numCopies); 
        } 
 
        m_seqID++; 
    } 
     
    fun void listenRateChange() { 
        OscRecv recv; 
        m_portListen => recv.port; 
        recv.listen(); 
        recv.event("RateChange, i i") @=> OscEvent oe; 
         
        while (true) { 
            oe => now; 
 
            while (oe.nextMsg() != 0) {  
                oe.getInt() => int seqID; 
                oe.getInt() => int changeFactor; 
                 
                if (seqID != m_lastRateSeq) {                     
                    if (changeFactor == -1 && m_numCopies >= MIN_RATE) 
                        m_numCopies--; 
                    if (changeFactor == 1 && m_numCopies <= MAX_RATE) 
                        m_numCopies++; 
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                    seqID => m_lastRateSeq; 
                } 
            } 
        }     
    } 
     
    fun void addString(string add) { 
        for (0 => int i; i < m_numCopies; i++) 
            packets[i].addString(add);   
    } 
     
    fun void addInt(int add) { 
        for (0 => int i; i < m_numCopies; i++) 
            packets[i].addInt(add);   
    } 
     
    fun void addFloat(float add) { 
        for (0 => int i; i < m_numCopies; i++) 
            packets[i].addFloat(add);   
    } 
} 
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AROscRecv.ck 
 
public class AROscRecv { 
   5 => int MIN_RATE; 
   30 => int MAX_RATE;  
     
   string m_clientList[0];  
   int m_lastSeqIDs[0]; 
    
   int m_portListen; 
   int m_portSend; 
   int seenCopies; 
    
   OscRecv recv; 
   OscEvent oe; 
    
   fun void port(int portNum) { 
       portNum => m_portListen; 
       (portNum + 1) => m_portSend; 
       portNum => recv.port; 
   } 
     
   fun void listen() { 
       recv.listen(); 
   }  
    
   fun void event(string msg) { 
       StringTokenizer tok; 
       tok.set(msg); 
        
       tok.next() => string msgSeqID; 
       " s i i " +=> msgSeqID; 
        
       while(tok.more()) 
           tok.next() + " " +=> msgSeqID; 
        
       recv.event(msgSeqID) @=> oe;    
   }  
    
   fun int nextMsg() { 
       0 => int isOnList; 
        
       if (oe.nextMsg() != 0) { 
           oe.getString() => string clientName; 
           oe.getInt() => int seqID; 
           oe.getInt() => int expectedCopies; 
                       
           for (0 => int i; i < m_clientList.size(); i++) 
               if (clientName == m_clientList[i]) 
                   1 => isOnList; 
                
           if (isOnList == false) { 
               m_clientList << clientName;  
               seqID => m_lastSeqIDs[clientName]; 
               1 => seenCopies; 
                
               return 1;           
           } 
            
           if (isOnList == true) { 
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               m_lastSeqIDs[clientName] => int lastSeqID; 
                
               if (lastSeqID == seqID) { 
                   seenCopies++; 
                   return 0; 
               } 
 
               if ((lastSeqID + 1) != seqID) { 
                   rateChange(clientName, m_portSend, 1); 
               } 
                   
               seqID => m_lastSeqIDs[clientName]; 
 
               if (seenCopies == expectedCopies && expectedCopies > 3) { 
                   rateChange(clientName, m_portSend, -1); 
               } 
                
               1 => seenCopies; 
                
               return 1;  
           } 
       } 
   }  
    
   fun void rateChange(string client, int port, int changeFactor) { 
       OscSend xmit; 
       string clientName; 
 
       xmit.setHost(client, port); 
       xmit.startMsg("RateChange", "i i"); 
       Std.rand2(1, 65535) => int randInt; 
        
       for (0 => int i; i < 10; i++) { 
           randInt => xmit.addInt;   
           changeFactor => xmit.addInt; 
       } 
   } 
    
   fun int getInt() { 
       return oe.getInt(); 
   } 
    
   fun float getFloat() { 
       return oe.getFloat(); 
   } 
    
   fun string getString() { 
       return oe.getString(); 
   } 
} 
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Converting Code from OSC to AROSC 

This guide shows basic examples of OSC and the corresponding AROSC implementations. 

Changing code from using OscSend to AROscSend is as easy as changing a type during 

declaration. AROscSend uses two ports (one to send and another to listen) – the listening port is 

automatically set to one plus the value the sending port number is set to, so do not use that port 

(e.g. if you set 6449 to transmit to the host, do not use port number 6550).  
 
OscSend xmit; 
xmit.setHost("localhost", 6449); 
 
while( true )  { 
    xmit.startMsg( "/msg", "i f s" ); 
    1 => xmit.addInt; 
    1.0 => xmit.addFloat; 
    "hi" => xmit.addString; 
     
    0.2::second => now; 
} 
 

AROscSend xmit; 
xmit.setHost("localhost", 6449); 
 
while( true )  { 
    xmit.startMsg( "/msg", "i f s" ); 
    1 => xmit.addInt; 
    1.0 => xmit.addFloat; 
    "hi" => xmit.addString; 
 
    0.2::second => now; 
} 

Changing code from using OscRecv to AROscRecv requires changing the declaration type from 

OscRecv to AROscRecv. In AROscRecv, the OscEvent object used in OscRecv is integrated 

directly into AROscRecv objects so calls to the event() method and subsequent waiting and 

parsing packets is done on the AROScRecv object, not an OscEvent object. 

 
OscRecv recv; 
6449 => recv.port; 
recv.listen(); 
recv.event( "/msg, i f s" ) @=> OscEvent oe; 
 
while ( true )  { 
    oe => now; 
     
    while ( oe.nextMsg() != 0 )  {  
        oe.getInt => int myInt;  
        oe.getFloat => float myFloat; 
        oe.getString => string myString; 
         
    } 
} 
 

AROscRecv recv; 
6449 => recv.port; 
recv.listen(); 
recv.event("/msg, i f s"); 
 
while ( true )  { 
     recv.oe => now; 
 
     while (recv.nextMsg() != 0)  {  

recv.getInt => int myInt;  
        recv.getFloat => float myFloat; 
       recv.getString => string myString; 
     } 
} 
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NTPServer.ck  
 
public class NTPServer 
{ 
    int port_timeRequest, port_timeReplies, port_RTTinfo, port_RTTbroadcast; 
     
    0 => int RTTreported; 
    0.0 => float RTTsum; 
     
    1000.0 => float TTO; 
     
    OscRecv recv; 
    OscEvent oe; 
     
    OscSend TTOsend; 
     
    fun void port(int portNum) { 
        portNum => port_timeRequest; 
        (portNum + 1) => port_timeReplies; 
        (portNum + 2) => port_RTTinfo; 
        (portNum + 3) => port_RTTbroadcast; 
         
        TTOsend.setHost("224.0.0.1", port_RTTbroadcast); 
         
        portNum => recv.port; 
         
        spork ~ listen(); 
        spork ~ RTTlisten(); 
        spork ~ broadcastTTO(); 
    } 
     
    fun void listen() { 
        recv.listen(); 
        recv.event("/ntp/request, s f") @=> oe; 
         
        OscSend send; 
         
        while (true)  { 
            oe => now; 
             
            while(oe.nextMsg() != 0)  { 
                oe.getString() => string host; 
                oe.getFloat() => float clientTime; 
                 
                send.setHost(host, port_timeReplies); 
                send.startMsg("/ntp/reply", "s f f"); 
                 
                host => send.addString; 
                clientTime => send.addFloat; 
                now / samp => send.addFloat; 
            } 
        } 
    } 
     
    fun void RTTlisten() { 
        OscRecv recv; 
        port_RTTinfo => recv.port; 
        recv.listen(); 



34 

        recv.event("/ntp/rtt, s f") @=> OscEvent roe; 
         
        while (true) { 
            roe => now; 
             
            while (roe.nextMsg() != 0) { 
                roe.getString() => string host; 
                roe.getFloat() => float RTT; 
                 
                RTT + RTTsum => RTTsum; 
                1 +=> RTTreported; 
                 
                if (RTTsum/RTTreported < .2 * TTO && RTTreported > 3) { 
                    Math.round(TTO * 0.5) => TTO; 
                    broadcastTTO(); 
                } 
                
                if (RTTsum/RTTreported > .6 * TTO && RTTreported > 3) { 
                    Math.round(TTO * 2.0) => TTO; 
                    broadcastTTO(); 
                } 
            } 
        }         
    } 
     
    fun void broadcastTTO() { 
        while (true) { 
            TTOsend.startMsg("/ntp/tto", "f"); 
            TTOsend.addFloat(TTO);  
             
            10::second => now;    
        }       
    } 
     
    fun time currentTime() { 
        return now;    
    }  
     
    fun float getTTO() { 
        return TTO; 
    } 
     
    fun float avgRTT() { 
        return RTTsum/RTTreported; 
    } 
} 
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NTPClient.ck 
 
public class NTPClient 
{ 
    Std.getenv("NET_NAME") + ".local" => string myName; 
     
    int port_timeRequest, port_timeReplies, port_RTTinfo, port_RTTget; 
     
    1000.0 => float TimeToExecute; 
     
    OscRecv recv; 
    OscEvent oe; 
     
    OscSend send; 
     
    float RTT, offset; 
     
    string host; 
     
    fun void setHost(string hostname, int port) { 
        send.setHost(hostname, port); 
         
        port_timeReplies => recv.port; 
         
        hostname => host; 
         
        port => port_timeRequest; 
        (port + 1) => port_timeReplies; 
        (port + 2) => port_RTTinfo; 
        (port + 3) => port_RTTget; 
         
        spork ~ requestTime(); 
        spork ~ getTime(); 
        spork ~ getRTT(); 
    } 
     
    fun void requestTime() {                 
        while(true) { 
            send.startMsg("/ntp/request", "s f"); 
            send.addString(myName); 
            send.addFloat(now/samp); 
             
            1::second => now; 
        } 
    } 
     
    fun void getTime() { 
        OscRecv timeGetter; 
        port_timeReplies => timeGetter.port; 
        timeGetter.listen(); 
        timeGetter.event("/ntp/reply, s f f") @=> OscEvent toe; 
         
        OscSend RTTdata; 
        RTTdata.setHost(host, port_RTTinfo); 
         
        while(true) { 
            toe => now; 
             
            while (toe.nextMsg() != 0) { 
                now / samp => float timeReplyReceived; 
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                toe.getString() => string host; 
                toe.getFloat() => float timeRequestSent; 
                toe.getFloat() => float serverTime; 
                 
                timeReplyReceived - timeRequestSent => RTT; 
                serverTime - timeRequestSent => offset; 
                 
                RTTdata.startMsg("/ntp/rtt", "s f"); 
                RTTdata.addString(myName); 
                RTTdata.addFloat(RTT); 
            } 
        } 
    } 
     
    fun void getRTT() { 
        OscRecv RTTget; 
        port_RTTget => RTTget.port; 
        RTTget.listen(); 
        RTTget.event("/ntp/tto, f") @=> OscEvent roe; 
         
        while(true) { 
            roe => now; 
             
            while (roe.nextMsg() != 0) 
                roe.getFloat() => TimeToExecute; 
        } 
    } 
     
    fun time currentTime() { 
        return (now + offset*samp + .5 * RTT*samp); 
    } 
     
    fun float getTTO() { 
       return TimeToExecute;  
    } 
} 
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TOscSend.ck 
 
public class TOscSend 
{ 
    Std.getenv("NET_NAME") + ".local" => string myName; 
     
    OscSend send; 
     
    int portSend; 
     
    string host; 
     
    fun void setHost(string hostname, int port) { 
        send.setHost(hostname, port); 
         
        hostname => host; 
        port => portSend; 
    } 
     
    fun void startMsg(string msg, string args, float currentTime, float TTO) { 
        send.startMsg(msg, "s, f, f, " + args); 
        send.addString(myName); 
        send.addFloat(currentTime); 
        send.addFloat(TTO); 
    } 
     
    fun void addString(string add) { 
        send.addString(add); 
    } 
     
    fun void addFloat(float add) { 
        send.addFloat(add); 
    } 
     
    fun void addInt(int add) { 
        send.addInt(add); 
    } 
}
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TOscRecv.ck 
 
public class TOscRecv 
{ 
    int portListen; 
     
    OscRecv recv; 
    OscEvent oe; 
     
    fun void port(int portNum) { 
        portNum => portListen; 
        portNum => recv.port; 
    } 
     
    fun void listen() { 
        recv.listen(); 
    } 
     
    fun void event(string msg) { 
       StringTokenizer tok; 
       tok.set(msg); 
        
       tok.next() => string msgSeqID; 
       " s f f " +=> msgSeqID; 
        
       while(tok.more()) 
           tok.next() + " " +=> msgSeqID; 
        
       recv.event(msgSeqID) @=> oe;   
    } 
     
    fun float nextMsg(float myTime) { 
        if (oe.nextMsg() != 0) { 
            oe.getString() => string host; 
            oe.getFloat() => float currentTime; 
            oe.getFloat() => float TTO; 
 
            return (currentTime + TTO - myTime); 
        } 
         
        else 
            return 0.0;         
    } 
     
    fun int getInt() { 
        return oe.getInt(); 
    } 
     
    fun float getFloat() { 
        return oe.getFloat(); 
    } 
     
    fun string getString() { 
        return oe.getString(); 
    }     
} 


